题目内容
已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是______.
解析:∵|PF1|+|PF2|=2a,|PQ|=|PF2|,
∴|PF1|+|PF2|=|PF1|+|PQ|=2a,
即|F1Q|=2a,
∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆.
故答案:圆.
∴|PF1|+|PF2|=|PF1|+|PQ|=2a,
即|F1Q|=2a,
∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆.
故答案:圆.
练习册系列答案
相关题目
已知椭圆的焦点是F1,F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是( )
| A、椭圆 | B、双曲线的一支 | C、抛物线 | D、圆 |