题目内容
(17)设函数f(x)=![]()
(Ⅰ)求f(x)的单调区间;
(Ⅱ)讨论f(x)的极值.
由已知得 f′(x)=6x[x-(a-1)],
令f′(x)=0, 解得 x1=0,x2=a-1.
(Ⅰ)当a=1时,f′(x)=6x2,f(x)在(-∞,+∞)上单调递增
当a>1时,f′(x)=6x[x-(a-1)].
f′(x)、f(x)随x的变化情况如下表:
x | (-∞,0) | 0 | (0,a-1) | a-1 | (a-1,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ↗ | 极大值 | ↘ | 极小值 | ↗ |
从上表可知
函数f(x)在(-∞,0)上单调递增;在(0,a-1)上单调递减;在(a-1,+∞)上单调递增.
(Ⅱ)由(Ⅰ)知,
当a=1时,函数f(x)没有极值.
当a>1时,函数f(x)在x=0处取得极大值1,在x=a-1处取得极小值1-(a-1)3.
练习册系列答案
相关题目