题目内容

设等差数列{an}的前n项和为Sn,a2=5,S5=35.设数列{bn}满足an=log2bn
(1)求数列{bn}的前n项和Tn
(2)设Gn=a1•b1+a2•b2+…+an•bn,求Gn
分析:(1)由题意得
a1+d=5
5a1+10d=35
,解出a1,d可得an,进而由an=log2bn可得bn,易判断{bn}为等比数列,利用等比数列的求和公式可求得Tn
(2)利用错位相减法可求得Gn
解答:解:(1)由题意得
a1+d=5
5a1+10d=35
,解得
a1=3
d=2

∴an=3+2(n-1)=2n+1.
由an=log2bn,得bn=2an=22n+1
bn+1
bn
=
22n+3
22n+1
=4,
∴数列{bn}是以4为公比,b1=23=8的等比数列,
Tn=23+25+…+22n+1=
8(1-4n)
1-4
=
8
3
(4n-1)
.     
(2)Gn=3•23+5•25+…+(2n+1)•22n+1
将上式两端同时乘以4,得4Gn=3•25+5•27+…+(2n-1)•22n+1+(2n+1)•22n+3
两式相减,得-3Gn=3•23+(2•25+2•27+…+2•22n+1)-(2n+1)•22n+3
=24+(26+28+…+22n+2)-(2n+1)•22n+3
=24+
64(1-4n-1)
1-4
-(2n+1)•22n+3
=
8-(48n+8)•4n
3

Gn=
(48n+8)•4n-8
9
点评:本题考查等差数列、等比数列的通项公式求和公式,错位相减法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网