题目内容
设等差数列{an}的前n项和为Sn,a2=5,S5=35.设数列{bn}满足an=log2bn.
(1)求数列{bn}的前n项和Tn;
(2)设Gn=a1•b1+a2•b2+…+an•bn,求Gn.
(1)求数列{bn}的前n项和Tn;
(2)设Gn=a1•b1+a2•b2+…+an•bn,求Gn.
分析:(1)由题意得
,解出a1,d可得an,进而由an=log2bn可得bn,易判断{bn}为等比数列,利用等比数列的求和公式可求得Tn;
(2)利用错位相减法可求得Gn.
|
(2)利用错位相减法可求得Gn.
解答:解:(1)由题意得
,解得
,
∴an=3+2(n-1)=2n+1.
由an=log2bn,得bn=2an=22n+1,
∴
=
=4,
∴数列{bn}是以4为公比,b1=23=8的等比数列,
∴Tn=23+25+…+22n+1=
=
(4n-1).
(2)Gn=3•23+5•25+…+(2n+1)•22n+1,
将上式两端同时乘以4,得4Gn=3•25+5•27+…+(2n-1)•22n+1+(2n+1)•22n+3,
两式相减,得-3Gn=3•23+(2•25+2•27+…+2•22n+1)-(2n+1)•22n+3
=24+(26+28+…+22n+2)-(2n+1)•22n+3
=24+
-(2n+1)•22n+3
=
,
∴Gn=
.
|
|
∴an=3+2(n-1)=2n+1.
由an=log2bn,得bn=2an=22n+1,
∴
| bn+1 |
| bn |
| 22n+3 |
| 22n+1 |
∴数列{bn}是以4为公比,b1=23=8的等比数列,
∴Tn=23+25+…+22n+1=
| 8(1-4n) |
| 1-4 |
| 8 |
| 3 |
(2)Gn=3•23+5•25+…+(2n+1)•22n+1,
将上式两端同时乘以4,得4Gn=3•25+5•27+…+(2n-1)•22n+1+(2n+1)•22n+3,
两式相减,得-3Gn=3•23+(2•25+2•27+…+2•22n+1)-(2n+1)•22n+3
=24+(26+28+…+22n+2)-(2n+1)•22n+3
=24+
| 64(1-4n-1) |
| 1-4 |
=
| 8-(48n+8)•4n |
| 3 |
∴Gn=
| (48n+8)•4n-8 |
| 9 |
点评:本题考查等差数列、等比数列的通项公式求和公式,错位相减法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目