题目内容
己知向量| a |
| x |
| 3 |
| x |
| 3 |
| b |
| x |
| 3 |
| 3 |
| x |
| 3 |
| a |
| b |
(1)求f(x)的最小正周期和单调减区间;
(2)如果△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,试求此时函数f(x)的值域.
分析:(1)根据函数f(x)=
•
进而利用两角和公式化简整理求得f(x)=sin(
+
)+
进而根据正弦函数的周期性求得最小正周期.进而根据正弦函数的单调性求得其单调减区间.
(2)把b2=ac代入余弦定理求得cosx的值,进而根据x的范围求得sin(
+
)的范围,进而确定函数的最大和最小值,求得函数的值域.
| a |
| b |
| 2x |
| 3 |
| π |
| 3 |
| ||
| 2 |
(2)把b2=ac代入余弦定理求得cosx的值,进而根据x的范围求得sin(
| 2x |
| 3 |
| π |
| 3 |
解答:解:(1)f(x)=
sin
+
(1+cos
)
=
sin
+
cos
+
=sin(
+
)+
T=
=3π
令
+2kπ≤
+
≤
+2kπ
∴
+3kπ≤x≤
+3kπ
单调原函数的减区间为[
+3kπ,
+3kπ]k∈z
(2)由已知b2=ac
cosx=
=
≥
=
∴
≤cosx<1,0<x≤
,
<
+
≤
∵|
-
|>|
-
|,
∴sin
<sin(
+
)≤1≤1,
∴
<sin(
+
)+
≤1+
.
即f(x)的值域为(
,1+
].
| 1 |
| 2 |
| 2x |
| 3 |
| ||
| 2 |
| 2x |
| 3 |
=
| 1 |
| 2 |
| 2x |
| 3 |
| ||
| 2 |
| 2x |
| 3 |
| ||
| 2 |
=sin(
| 2x |
| 3 |
| π |
| 3 |
| ||
| 2 |
T=
| 2π | ||
|
令
| π |
| 2 |
| 2x |
| 3 |
| π |
| 3 |
| 3π |
| 2 |
∴
| π |
| 4 |
| 7π |
| 4 |
单调原函数的减区间为[
| π |
| 4 |
| 7π |
| 4 |
(2)由已知b2=ac
cosx=
| a2+c2-b2 |
| 2ac |
| a2+c2-ac |
| 2ac |
| 2ac-ac |
| 2ac |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 2x |
| 3 |
| π |
| 3 |
| 5π |
| 9 |
∵|
| π |
| 3 |
| π |
| 2 |
| 5π |
| 9 |
| π |
| 2 |
∴sin
| π |
| 3 |
| 2x |
| 3 |
| π |
| 3 |
∴
| 3 |
| 2x |
| 3 |
| π |
| 3 |
| ||
| 2 |
| ||
| 2 |
即f(x)的值域为(
| 3 |
| ||
| 2 |
点评:本题主要考查了正弦函数的单调性,周期性和值域问题.考查了学生综合分析问题和解决问题的能力.
练习册系列答案
相关题目
己知向量
=(2,1),
=(-3,4),则
-
=( )
| a |
| b |
| a |
| b |
| A、(5,-3) |
| B、(1,-3) |
| C、(5,3) |
| D、(-5,3) |