题目内容
已知函数f(x)=x2+x-1,α,β是方程f(x)=0的两个根(α>β),f′(x)是f(x)的导数,设a1=1,an+1=an-| f(an) |
| f′(an) |
(1)求α,β的值;
(2)证明:对任意的正整数n,都有an>α;
(3)记bn=ln
| an-β |
| an-α |
分析:(1)由f(x)=x2+x-1,α,β是方程f(x)=0的两个根(α>β)可求得α=
,β=
;
(2)由f'(x)=2x+1,an+1=an-
=an-
=
(2an+1)+
-
,由基本不等式可知a2≥
>0,依此有an>
=α
(3)an+1-β=
,an+1-α=
,bn+1=2bn,数列{bn}是等比数列,由其前n项和公式求解.
-1+
| ||
| 2 |
-1-
| ||
| 2 |
(2)由f'(x)=2x+1,an+1=an-
| ||
| 2an+1 |
| ||||||
| 2an+1 |
| 1 |
| 4 |
| ||
| 2an+1 |
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
(3)an+1-β=
| (an-β)2 |
| 2an+1 |
| (an-α)2 |
| 2an+1 |
解答:解:(1)∵f(x)=x2+x-1,α,β是方程f(x)=0的两个根(α>β),
∴α=
,β=
;
(2)f'(x)=2x+1,an+1=an-
=an-
=
(2an+1)+
-
,
∵a1=1,
∴有基本不等式可知a2≥
>0(当且仅当a1=
时取等号),
∴a2>
>0,同样a3>
,an>
=α(n=1,2),
(3)an+1-β=an-β-
=
(an+1+α)
而α+β=-1,即α+1=-β,an+1-β=
,
同理an+1-α=
,bn+1=2bn,
又b1=ln
=ln
=2ln
sn=2(2n-1)ln
∴α=
-1+
| ||
| 2 |
-1-
| ||
| 2 |
(2)f'(x)=2x+1,an+1=an-
| ||
| 2an+1 |
| ||||||
| 2an+1 |
=
| 1 |
| 4 |
| ||
| 2an+1 |
| 1 |
| 2 |
∵a1=1,
∴有基本不等式可知a2≥
| ||
| 2 |
| ||
| 2 |
∴a2>
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
(3)an+1-β=an-β-
| (an-α)(an-β) |
| 2an+1 |
| an-β |
| 2an+1 |
而α+β=-1,即α+1=-β,an+1-β=
| (an-β)2 |
| 2an+1 |
同理an+1-α=
| (an-α)2 |
| 2an+1 |
又b1=ln
| 1-β |
| 1-α |
3+
| ||
3-
|
3+
| ||
| 2 |
3+
| ||
| 2 |
点评:本题主要考查函数与数列的综合运用,还考查了数列的递推与前n项和公式.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|