题目内容

已知函数

(Ⅰ)当时,若上单调递增,求实数的取值范围;

(Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得的最大值,的最小值.

(Ⅰ)时,,则上单调递减,不符题意。

时,要使上单调递增,必须满足 ,∴

综上,

(Ⅱ)若,则无最大值,故

为二次函数,

要使有最大值,必须满足,即

此时,时,有最大值。

取最小值时,,依题意,有

,∴,得

此时

∴满足条件的实数对

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网