题目内容

4.用数学归纳法证明:1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}-1}$≤n(n≥1).

分析 直接利用数学归纳法证明问题的步骤,证明不等式即可.

解答 证明:(1)当n=1时,左边=1,右边=1,命题成立.
(2)假设当n=k时,1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k}-1}$≤k成立
当n=k+1时,左边=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$≤k+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$
≤k+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k}}$=k+1,
当n=k+1时命题成立.
由(1)(2)可得,对于任意n≥1,n∈N*都成立.

点评 本题考查数学归纳法证明含自然数n的表达式的证明方法,注意n=k+1的证明时,必须用上假设.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网