题目内容
4.用数学归纳法证明:1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}-1}$≤n(n≥1).分析 直接利用数学归纳法证明问题的步骤,证明不等式即可.
解答 证明:(1)当n=1时,左边=1,右边=1,命题成立.
(2)假设当n=k时,1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k}-1}$≤k成立
当n=k+1时,左边=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$≤k+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k+1}-1}$
≤k+$\frac{1}{{2}^{k}}$+…+$\frac{1}{{2}^{k}}$=k+1,
当n=k+1时命题成立.
由(1)(2)可得,对于任意n≥1,n∈N*都成立.
点评 本题考查数学归纳法证明含自然数n的表达式的证明方法,注意n=k+1的证明时,必须用上假设.
练习册系列答案
相关题目
15.已知函数f(x)=2x-2的定义域为[1,3],f(x)的图象上的左、右两个端点分别为A、B,$\overrightarrow{OM}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$,λ∈[0,1],O为坐标原点,设点N(3-2λ,f(3-2λ)),若不等式|$\overrightarrow{MN}$|≤k恒成立,则实数k的最小值为( )
| A. | $\frac{3}{ln2}$+$\frac{3(lo{g}_{2}3)}{ln2}$-1 | B. | 3log2$\frac{3}{ln2}$-$\frac{3}{ln2}$-1 | ||
| C. | log23-3log2$\frac{3}{ln2}$+1 | D. | $\frac{3}{ln2}$-$\frac{3(lo{g}_{2}3)}{ln2}$+1 |
16.已知函数f(x)=aln(x+1)-x2,在区间(0,1)内任取两个实数x1,x2(x1≠x2),若不等式$\frac{f({x}_{1}+1)-f({x}_{2}+1)}{{x}_{1}-{x}_{2}}$>1恒成立,则实数a的取值范围是( )
| A. | [11,+∞) | B. | [13,+∞) | C. | [15,+∞) | D. | [17,+∞) |
14.执行如图程序框图,输出的结果为( )

| A. | 20 | B. | 30 | C. | 42 | D. | 56 |