题目内容

若n∈N*,且n为奇数,则6n+C
1n
•6n-1+C
2n
•6n-2+…+C
n-1n
•6被8除所得的余数是______.
法一:根据题意,6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6
=6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6+Cnn-1
=(6+1)n-1=7n-1=(8-1)n-1
=Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8+(-1)nCnn-1
又由n为奇数,则6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1=Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8-2,
且Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8可以被8整除,
则6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6被8除所得的余数是6;
法二,根据题意,n∈N*,且n为奇数,
在6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6中,令n=1,可得6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6=6,
6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6被8除所得的余数是6.
故答案为:6.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网