题目内容
设等比数列{an}的前n项和为Sn,a4=a1-9,a5,a3,a4成等差数列.
(1)求数列{an}的通项公式,
(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
(1)求数列{an}的通项公式,
(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
(1)设等比数列{an}的公比为q,
则
,解得
,
故数列{an}的通项公式为:an=(-2)n-1,
(2)由(1)可知an=(-2)n-1,
故Sk=
=
,
所以Sk+1=
,Sk+2=
,
∴Sk+1+Sk+2=
+
=
=
=
,
而2Sk=2
=
=
=
,
故Sk+1+Sk+2=2Sk,即Sk+2,Sk,Sk+1成等差数列
则
|
|
故数列{an}的通项公式为:an=(-2)n-1,
(2)由(1)可知an=(-2)n-1,
故Sk=
| 1×[1-(-2)k-1] |
| 1-(-2) |
| 1-(-2)k-1 |
| 3 |
所以Sk+1=
| 1-(-2)k |
| 3 |
| 1-(-2)k+1 |
| 3 |
∴Sk+1+Sk+2=
| 1-(-2)k |
| 3 |
| 1-(-2)k+1 |
| 3 |
| 2-(-2)k-(-2)k+1 |
| 3 |
=
| 2-(-2)k(1-2) |
| 3 |
| 2+(-2)k |
| 3 |
而2Sk=2
| 1-(-2)k-1 |
| 3 |
| 2-2(-2)k-1 |
| 3 |
| 2+(-2)(-2)k-1 |
| 3 |
| 2+(-2)k |
| 3 |
故Sk+1+Sk+2=2Sk,即Sk+2,Sk,Sk+1成等差数列
练习册系列答案
相关题目
设等比数列{an}的前n项和为Sn,若8a2+a5=0,则下列式子中数值不能确定的是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
设等比数列{an}的前n项和为Sn,若
=3,则
=( )
| S6 |
| S3 |
| S9 |
| S6 |
A、
| ||
B、
| ||
C、
| ||
| D、1 |