题目内容
当a≥0时解关于x的不等式 ax2-(a+2)x+2<0.
原不等式可化为:(ax-2)(x-1)<0,
(1)当a=0时,x>1;
(2)当a>0时,不等式化为(x-
)(x-1)<0,
若
<1,即a>2,则
<x<1;
若
=1,即a=2,则x∈∅;
若
>1,即0<a<2,则1<x<
;
综上所述,原不等式的解集为
当a=0时,{x|x>1};当0<a<2时,{x|1<x<
};当a=2时,x∈∅;当a>2时,{x
<x<1}.
(1)当a=0时,x>1;
(2)当a>0时,不等式化为(x-
| 2 |
| a |
若
| 2 |
| a |
| 2 |
| a |
若
| 2 |
| a |
若
| 2 |
| a |
| 2 |
| a |
综上所述,原不等式的解集为
当a=0时,{x|x>1};当0<a<2时,{x|1<x<
| 2 |
| a |
| 2 |
| a |
练习册系列答案
相关题目