题目内容

已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},若B⊆A,求满足条件的实数a的值所组成的集合.
考点:集合的包含关系判断及应用
专题:集合
分析:由x2-3x+2=0解得x.可得A={1,2}.由于B⊆A,可得B可能为∅,{1},{2},{1,2}.对于x2-ax+a-1=0,△=a2-4(a-1)=(a-2)2≥0.分类讨论:当a=2时,当a≠2时,即可得出.
解答: 解:由x2-3x+2=0解得x=1,2.
∴A={1,2}.
∵B⊆A,∴B可能为∅,{1},{2},{1,2}.
对于x2-ax+a-1=0,△=a2-4(a-1)=(a-2)2≥0.
当a=2时,△=0,B={1},满足条件;
当a≠2时,△>0,若B={1,2},则
1+2=a
1×2=a-1
,解得a=3.
综上可得:满足条件的实数a的值所组成的集合为{2,3}.
点评:本题考查了集合之间的关系、分类讨论的思想方法,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网