题目内容

若函数f(x)是定义在R上的偶函数,在(-∞,0)上是减函数,且f(2)=0,则使f(x)<0的x的取值范围是(   )
  A.(-∞,2)    B.(2,+∞)   C.(-∞,2)∪(2,+∞)   D.(-2,2)
解析:由f(x)在(-∞,0)上是减函数,且f(x)为偶函数得f(x)在(0,+∞)上是增函数,∴f(x)在(-∞,-2]上递减,在[2,+∞)上递增.
  又∵f(2)=0, ∴f(-2)=0 ∴f(x)在(-∞,-2]上总有f(x)≥f(-2)=0, ① f(x)在[2,+∞)上总有f(x)≥f(2)=0 ②
  ∴由①②知使f(x)<0的x的取值范围是(-2,2),应选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网