题目内容

(2012•茂名二模)若(1-2x)2013=a0+a1x+a2x2+…+a2013x2013(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2013)=
2011
2011
(数字作答)
分析:在所给的等式中,令x=0 可得a0 =1.故有(1-2x)2013 =1+a1x+a2x2+…+a2013x2013 ,再令x=1可得
a1 +a2 +a3 +…+a2013 的值,从而求得所求式子的值.
解答:解:在二项式的展开式(1-2x)2013=a0+a1x+a2x2+…+a2013x2013(x∈R)中,
令x=0 可得a0 =1.
∴(1-2x)2013 =1+a1x+a2x2+…+a2013x2013 ,再令x=1可得1+a1 +a2 +a3 +…+a2013 =-1,
故a1 +a2 +a3 +…+a2013 =-2,
故 (a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2013)=2013a0 +a1 +a2 +a3 +…+a2013 =2013-2=2011,
故答案为 2011.
点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式的系数和常用的方法是赋值法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网