题目内容

已知等差数列数列{an}的前n项和为Sn,等比数列{bn}的各项均为正数,公比是q,且满足:a1=3,b1=1,b2+S2=12,S2=b2q.
(1)求an与bn
(2)设cn=anbn,求数列{cn}的前n项和Tn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知得
q+3+a2=12
3+a2=q2
,且q>0,由此能求出an=3n.bn=3n-1
(2)由cn=anbn=3n•3n-1=n•3n.利用错位相减法能求出数列{cn}的前n项和Tn
解答: 解:(1)由已知得
q+3+a2=12
3+a2=q2
,且q>0,
解得a2=6,q=3,∴d=6-3=3,
∴an=3n,bn=3n-1
(2)cn=anbn=3n•3n-1=n•3n
∴Tn=1•3+2•32+3•33+…+n•3n,①
3Tn=1•32+2•33+3•34+…+n•3n+1,②
②-①,得-2Tn=3+32+…+3n-n•3n+1
=
3(1-3n)
1-3
-n•3n+1

=
3n+1-3
2
-n•3n+1

∴Tn=
3
4
(2n•3n-3n+1)
=
3
4
[(2n-1)•3n+1]
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网