题目内容
函数f(x)的定义域为(a,b),且对其内任意实数x1,x2均有:
<0,则f(x)在(a,b)上是
______函数(增、减性)
| f(x1)-f(x2) |
| x1-x2 |
当x1>x2时,x1-x2>0,
则f(x1)-f(x2)<0,
即(x1)>f(x2);
当 x1<x2时,x1-x2<0,
则f(x1)-f(x2)>0,
即f(x1)>f(x2).
即可判断f(x)在(a,b)上是减函数,
故本题的答案是减函数.
则f(x1)-f(x2)<0,
即(x1)>f(x2);
当 x1<x2时,x1-x2<0,
则f(x1)-f(x2)>0,
即f(x1)>f(x2).
即可判断f(x)在(a,b)上是减函数,
故本题的答案是减函数.
练习册系列答案
相关题目
若函数f(x)的定义域为[-1,2],则函数
的定义域为( )
| f(x+2) |
| x |
| A、[-1,0)∪(0,2] |
| B、[-3,0) |
| C、[1,4] |
| D、(0,2] |