题目内容
设向量
,
,
,满足
+
+
=
,且
⊥
,|
|=1,|
|=2,则|
|=( )
| a |
| b |
| c |
| a |
| b |
| c |
| 0 |
| a |
| b |
| a |
| b |
| c |
分析:由已知易得
•
=0,|
|=|-
-
|=|
+
|=
=
,代入计算即可.
| a |
| b |
| c |
| a |
| b |
| a |
| b |
(
|
|
解答:解:∵
⊥
,∴
•
=0,又|
|=1,|
|=2,
由题意可得|
|=|-
-
|=|
+
|=
=
=
=
,
故选D
| a |
| b |
| a |
| b |
| a |
| b |
由题意可得|
| c |
| a |
| b |
| a |
| b |
(
|
|
| 1+4 |
| 5 |
故选D
点评:本题考查向量的数量积和向量的模长公式,属基础题.
练习册系列答案
相关题目