题目内容
16.求证:an+1+(a+1)2n-1能被a2+a+1整除,n∈N+,a∈R.分析 本题考查的知识点是数学归纳法,我们可以先验证①n=1时命题是否成立;②假设n=k时命题成立;③推证n=k+1时命题成立,得结论.
解答 证明:(1)当n=1时,a2+(a+1)=a2+a+1可被a2+a+1整除
(2)假设n=k(k∈N*)时,ak+1+(a+1)2k-1能被a2+a+1整除,则当n=k+1时,
ak+2+(a+1)2k+1=a•ak+1+(a+1)2(a+1)2k-1
=a[ak+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1,
由假设可知a[ak+1+(a+1)2k-1]能被(a2+a+1)整除,
(a2+a+1)(a+1)2k-1也能被(a2+a+1)整除
∴ak+2+(a+1)2k+1能被(a2+a+1)整除,即n=k+1时命题也成立,
∴对任意n∈N*原命题成立.
点评 数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.
练习册系列答案
相关题目
6.在曲线y=x2(x≥0)上某一点A处作一条切线使之与曲线以及x轴围成的面积为$\frac{1}{12}$,则以A为切点的切线方程为
( )
( )
| A. | y=$\frac{3}{2}$x-$\frac{1}{2}$ | B. | y=2x-1 | C. | y=2x+1 | D. | y=$\frac{1}{2}$x+$\frac{1}{2}$ |
4.在椭圆$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{9}$=1内,通过点M(1,1)且被这点平分的弦所在的直线方程为( )
| A. | 9x-16y+7=0 | B. | 16x+9y-25=0 | C. | 9x+16y-25=0 | D. | 16x-9y-7=0 |