题目内容
若在数列{an}中,a1=3,an+1=an+n,通项an=
.
| n2-n+6 |
| 2 |
| n2-n+6 |
| 2 |
分析:由已知利用“an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1”即可得出.
解答:解:∵a1=3,an+1=an+n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(n-1)+(n-2)+…+1+3
=
+3
=
.
故答案为:
.
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(n-1)+(n-2)+…+1+3
=
| (n-1)(1+n-1) |
| 2 |
=
| n2-n+6 |
| 2 |
故答案为:
| n2-n+6 |
| 2 |
点评:本题考查了“累加求和”求熟练的通项公式,属于中档题.
练习册系列答案
相关题目