题目内容
在△ABC中,A=
,cosB=
.
(I)求cos C;
(II)设BC=
,求AC和AB.
| π |
| 4 |
| ||
| 5 |
(I)求cos C;
(II)设BC=
| 5 |
(I)∵cosB=
>0,B∈(0,π)
∴B为锐角,且sinB=
=
∵A+B=π-C,
∴cosC=-cos(A+B)=sinAsinB-cosAcosB=
×
-
×
=
;
(II)根据正弦定理,得
=
∴AC=
=
=2
由余弦定理,得AB2=AC2+BC2-2AC•BCcosC=8+5-2×2
×
×
=9
∴AB=3(舍负)
| ||
| 5 |
∴B为锐角,且sinB=
| 1-cos2B |
2
| ||
| 5 |
∵A+B=π-C,
∴cosC=-cos(A+B)=sinAsinB-cosAcosB=
| ||
| 2 |
2
| ||
| 5 |
| ||
| 2 |
| ||
| 5 |
| ||
| 10 |
(II)根据正弦定理,得
| AC |
| sinB |
| BC |
| sinA |
∴AC=
| BC•sinB |
| sinA |
| ||||||
|
| 2 |
由余弦定理,得AB2=AC2+BC2-2AC•BCcosC=8+5-2×2
| 2 |
| 5 |
| ||
| 10 |
∴AB=3(舍负)
练习册系列答案
相关题目