题目内容
化简:
(1)
-(π-1)0-(3
)
-(
)-
;
(2)lg2•lg50+lg25-lg5•lg20.
(1)
6
|
| 1 |
| 8 |
| 1 |
| 3 |
| 1 |
| 64 |
| 2 |
| 3 |
(2)lg2•lg50+lg25-lg5•lg20.
分析:(1)利用有理数指数幂的运算性质和运算法则,把
-(π-1)0-(3
)
-(
)-
等价转化为
-1-
-(
)-2,由此能求出结果.
(2)利用对数的运算性质和运算法则,把lg2•lg50+lg25-lg5•lg20等价转化为lg2(1+lg5)+2lg5-lg5(2lg2+lg5),由此能求出结果.
6
|
| 1 |
| 8 |
| 1 |
| 3 |
| 1 |
| 64 |
| 2 |
| 3 |
| 5 |
| 2 |
| 3 |
| 2 |
| 1 |
| 4 |
(2)利用对数的运算性质和运算法则,把lg2•lg50+lg25-lg5•lg20等价转化为lg2(1+lg5)+2lg5-lg5(2lg2+lg5),由此能求出结果.
解答:解:(1)
-(π-1)0-(3
)
-(
)-
=
-1-
-(
)-2
=-16.
(2)lg2•lg50+lg25-lg5•lg20
=lg2(1+lg5)+2lg5-lg5(2lg2+lg5)
=lg2+lg2lg5+2lg5-2lg2lg5-(lg5)2
=lg2+2lg5-lg5(lg2+lg5)
=lg2+lg5
=1.
6
|
| 1 |
| 8 |
| 1 |
| 3 |
| 1 |
| 64 |
| 2 |
| 3 |
=
| 5 |
| 2 |
| 3 |
| 2 |
| 1 |
| 4 |
=-16.
(2)lg2•lg50+lg25-lg5•lg20
=lg2(1+lg5)+2lg5-lg5(2lg2+lg5)
=lg2+lg2lg5+2lg5-2lg2lg5-(lg5)2
=lg2+2lg5-lg5(lg2+lg5)
=lg2+lg5
=1.
点评:本题考查有理数指数幂和对数的运算性质和运算法则的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目