题目内容
已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是( )
| A.-1<a<2 | B.-3<a<6 | C.a<-3或a>6 | D.a<-1或a>2 |
由于f(x)=x3+ax2+(a+6)x+1,
有f′(x)=3x2+2ax+(a+6).
若f(x)有极大值和极小值,
则△=4a2-12(a+6)>0,
从而有a>6或a<-3,
故选C.
有f′(x)=3x2+2ax+(a+6).
若f(x)有极大值和极小值,
则△=4a2-12(a+6)>0,
从而有a>6或a<-3,
故选C.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|