题目内容
已知F1、F2是椭圆| x2 |
| k+2 |
| y2 |
| k+1 |
分析:先根据a2=k+2,b2=k+1求得c的表达式.再根据椭圆定义知道|AF1|+|AF2|关于k的表达式,再根据三角形ABF2的周长求得k,进而可求得a,最后根据e=
求得椭圆的离心率.
| c |
| a |
解答:解:由题意知a2=k+2,b2=k+1
c2=k+2-(k+1)=1
所以c=1
根据椭圆定义知道:
lAF1l+lAF2l=lBF1l+lBF2l=2
而三角形ABF2的周长
=lABl+lAF2l+lBF2l
=lAF1l+lAF2l+lBF1l+lBF2l
=4
=8
得出k+2=4
得K=2
∴a=
=2,
e=
=
故答案为:
c2=k+2-(k+1)=1
所以c=1
根据椭圆定义知道:
lAF1l+lAF2l=lBF1l+lBF2l=2
| k+2 |
而三角形ABF2的周长
=lABl+lAF2l+lBF2l
=lAF1l+lAF2l+lBF1l+lBF2l
=4
| k+2 |
得出k+2=4
得K=2
∴a=
| k+2 |
e=
| c |
| a |
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
点评:本题主要考查了椭圆性质.要利用好椭圆的第一和第二定义.
练习册系列答案
相关题目