题目内容
如图15所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点.
(1)求证:EF⊥BC;
(2)求二面角EBFC的正弦值.
![]()
图15
解:(1)证明:方法一,过点E作EO⊥BC,垂足为O,连接OF.由△ABC≌△DBC可证出△EOC≌△FOC,所以∠EOC=∠FOC=
,即FO⊥BC.又EO⊥BC,EO∩FO=O,所以BC⊥平面EFO.又EF⊂平面EFO,所以EF⊥BC.
![]()
图1
方法二,由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线,并将其作为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线,并将其作为z轴,建立如图所示的空间直角坐标系,易得B(0,0,0),A(0,-1,
),D(
,-1,0),C(0,2,0),因而E(0,
,
),F(
,
,0),所以
=0,
从而
,所以EF⊥BC.
![]()
图2
(2)方法一,在图1中,过点O作OG⊥BF,垂足为G,连接EG.因为平面ABC⊥平面BDC,所以EO⊥面BDC,又OG⊥BF,所以由三垂线定理知EG⊥BF,
因此∠EGO为二面角EBFC的平面角.
在△EOC中,EO=
EC=
BC·cos 30°=
.
由△BGO∽△BFC知,OG=
·FC=
,因此tan∠EGO=
=2,从而得sin∠EGO=
,即二面角EBFC的正弦值为
.
方法二,在图2中,平面BFC的一个法向量为n1=(0,0,1).
设平面BEF的法向量n2=(x,y,z),
又
=(
,
,0),
=(0,
,
),
所以
得其中一个n2=(1,-
,1).
设二面角EBFC的大小为θ,且由题知θ为锐角,则cos θ=|cos〈n1,n2〉|=
=
,
因此sin θ=
=
,即所求二面角正弦值为
.
中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”.某校对全校学生过马路方式进行调查,在所有参与调查的人中,“跟从别人闯红灯”“从不闯红灯”“带头闯红灯”人数如表所示:
|
| 跟从别人闯红灯 | 从不闯红灯 | 带头闯红灯 |
| 男生 | 800 | 440 | 200 |
| 女生 | 200 | 160 | 200 |
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知“跟从别人闯红灯”的人中抽取50人,求n的值.
(2)在“带头闯红灯”的人中,将男生的200人编号为001,002,…,200;将女生的200人编号为201,202,…,400,用系统抽样的方法抽取5人参加“文明交通”宣传活动,若抽取的第一个人的编号为30,把抽取的5人看成一个总体,从这5人中任选取2人,求至少有一名女生的概率.