题目内容
已知函数
,
。
(1)若对任意的实数a,函数
与
的图象在x = x0处的切线斜率总想等,求x0的值;
(2)若a > 0,对任意x > 0不等式
恒成立,求实数a的取值范围。
(1)a-1(2)![]()
解析试题分析:解:(Ⅰ)
恒成立,
恒成立即
.
方法一:
恒成立,则![]()
![]()
而当
时,![]()
![]()
则
,
,
在
单调递增,
当
,
,
在
单调递减,
则
,符合题意.
即
恒成立,实数
的取值范围为
;![]()
方法二:
,![]()
(1)当
时,
,
,
,
在
单调递减,
当
,
,
在
单调递增,
则
,不符题意;
(2)当
时,
,
①若
,
,
,
,
单调递减;当
,
,
单调递增,则
,矛盾,不符题意;![]()
②若
,
(Ⅰ)若
,
;
;
,
在
单调递减,
在
单调递增,
在
单调递减,
不符合题意;
(Ⅱ)若
时,
,
,
在
单调递减,
,不符合题意.
(Ⅲ)若
,
,
,
,
,
练习册系列答案
相关题目