题目内容

7.已知数列{an}满足:a1=$\frac{1}{2}$,an+1=an2+an,用[x]表示不超过x的最大整数,则$[{\frac{1}{{{a_1}+1}}+\frac{1}{{{a_2}+1}}+…+\frac{1}{{{a_{2014}}+1}}}]$的值等于(  )
A.0B.1C.2D.3

分析 an+1=an2+an,a1=$\frac{1}{2}$,可得${a}_{n+1}-{a}_{n}={a}_{n}^{2}$>0,因此数列{an}单调递增.a2=$(\frac{1}{2})^{2}+\frac{1}{2}$=$\frac{3}{4}$,${a}_{3}=(\frac{3}{4})^{2}+\frac{3}{4}$=$\frac{21}{16}$>1,可得0<$\frac{1}{{a}_{2015}}$<1.变形$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}({a}_{n}+1)}$=$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n}+1}$,即$\frac{1}{{a}_{n}+1}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$.利用“裂项求和”可得:$\frac{1}{{a}_{1}+1}+\frac{1}{{a}_{2}+1}$+…+$\frac{1}{{a}_{2014}+1}$=$\frac{1}{{a}_{1}}-\frac{1}{{a}_{2015}}$,即可得出.

解答 解:∵an+1=an2+an,a1=$\frac{1}{2}$,
∴${a}_{n+1}-{a}_{n}={a}_{n}^{2}$>0,
∴an+1>an
∴数列{an}单调递增,
a2=$(\frac{1}{2})^{2}+\frac{1}{2}$=$\frac{3}{4}$,
${a}_{3}=(\frac{3}{4})^{2}+\frac{3}{4}$=$\frac{21}{16}$>1,
∴0<$\frac{1}{{a}_{2015}}$<1
∴$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}({a}_{n}+1)}$=$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n}+1}$,
∴$\frac{1}{{a}_{n}+1}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$.
∴$\frac{1}{{a}_{1}+1}+\frac{1}{{a}_{2}+1}$+…+$\frac{1}{{a}_{2014}+1}$
=$(\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}})$+$(\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}})$+…+$(\frac{1}{{a}_{2014}}-\frac{1}{{a}_{2015}})$
=2-$\frac{1}{{a}_{2015}}$
∴$1<2-\frac{1}{{a}_{2015}}<2$.
∴$[{\frac{1}{{{a_1}+1}}+\frac{1}{{{a_2}+1}}+…+\frac{1}{{{a_{2014}}+1}}}]$=1.
故选:B.

点评 本题考查了递推式的应用、变形能力、[x]的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网