题目内容
设数列an、bn、cn的前n项和分别为Sn、Tn、Rn,对?n∈N*,an=5Sn+1,bn=| 4+an |
| 1-an |
①求an的通项公式;
②求证:Rn<
| 3 |
| 2 |
③若Tn<λn,对?n∈N*恒成立,求λ的取值范围.
分析:①由an=5Sn+1得a1=5S1+1=5a1+1,a1=-
.n>1时,an-1=5Sn-1+1,由此能求出an.
②bn=
=
=4+
,cn=b2n-b2n-1=
+
c1=
,cn=
=
<
,由此能够证明Rn<
.
③由Tn<λn得λ>
,Tn=4n+5×[
+
+
++
],由此进行分类讨论能够得到λ的取值范围是.
| 1 |
| 4 |
②bn=
| 4+an |
| 1-an |
| 4×(-4)n+1 |
| (-4)n-1 |
| 5 |
| (-4)n-1 |
| 5 |
| 16n-1 |
| 20 |
| 16n+4 |
| 4 |
| 3 |
| 25×16n |
| (16n-1)(16n+4) |
| 25×16n |
| 162n+3×16n-4 |
| 25 |
| 16n |
| 3 |
| 2 |
③由Tn<λn得λ>
| Tn |
| n |
| 1 |
| -4-1 |
| 1 |
| 42-1 |
| 1 |
| -43-1 |
| 1 |
| (-4)n-1 |
解答:解:①由an=5Sn+1得a1=5S1+1=5a1+1,a1=-
.n>1时,an-1=5Sn-1+1,
两式相减得an-an-1=5(Sn-Sn-1)=5an,an=-
an-1,
所以an=(-
)n.
②bn=
=
=4+
,
cn=b2n-b2n-1=
+
c1=
,
cn=
=
<
,
从而Rn=
+c2++cn<
+
+
++
=
+
×
<
+
×
<
.
③由Tn<λn得λ>
,Tn=4n+5×[
+
+
++
],
若n=2k-1(k∈N*)是奇数,
则Tn≥4n-1,λ>
当且仅当λ≥4;
若n=2k(k∈N*)是偶数,b2m-1+b2m=8+
+
=8+
<8,
Tn<4n,即当λ≥4时有Tn<λn.
综上所述,λ的取值范围是[4,+∞).
| 1 |
| 4 |
两式相减得an-an-1=5(Sn-Sn-1)=5an,an=-
| 1 |
| 4 |
所以an=(-
| 1 |
| 4 |
②bn=
| 4+an |
| 1-an |
| 4×(-4)n+1 |
| (-4)n-1 |
| 5 |
| (-4)n-1 |
cn=b2n-b2n-1=
| 5 |
| 16n-1 |
| 20 |
| 16n+4 |
| 4 |
| 3 |
cn=
| 25×16n |
| (16n-1)(16n+4) |
| 25×16n |
| 162n+3×16n-4 |
| 25 |
| 16n |
从而Rn=
| 4 |
| 3 |
| 4 |
| 3 |
| 25 |
| 162 |
| 25 |
| 163 |
| 25 |
| 16n |
| 4 |
| 3 |
| 25 |
| 162 |
1-
| ||
1-
|
| 4 |
| 3 |
| 25 |
| 162 |
| 16 |
| 15 |
| 3 |
| 2 |
③由Tn<λn得λ>
| Tn |
| n |
| 1 |
| -4-1 |
| 1 |
| 42-1 |
| 1 |
| -43-1 |
| 1 |
| (-4)n-1 |
若n=2k-1(k∈N*)是奇数,
则Tn≥4n-1,λ>
| Tn |
| n |
若n=2k(k∈N*)是偶数,b2m-1+b2m=8+
| 5 |
| (-4)2m-1-1 |
| 5 |
| (-4)2m-1 |
| -15×42m |
| (42m-1)(42m+4) |
Tn<4n,即当λ≥4时有Tn<λn.
综上所述,λ的取值范围是[4,+∞).
点评:多个数列通常意味着多种形式的数列、多层次问题,解题通常需要有开阔的视野和思路,能适当选择、适时转换,关键是用等差等比数列性质处理好“起始”数列,不等式的处理则要求适度“放大”或“缩小”,处理好端点.
练习册系列答案
相关题目