题目内容
已知f(x)=2sin(x+
)-
tanα•cos2
,α∈(0,π) 且f(
=
-2).
(1)求α;
(2)当x∈[
,π]时,求函数y=f(x+α)的值域.
| π |
| 6 |
4
| ||
| 3 |
| x |
| 2 |
| π |
| 2 |
| 3 |
(1)求α;
(2)当x∈[
| π |
| 2 |
(1)因为f(x)=2sin(x+
)-
tanα•cos2
,∴f(
)=2sin(
+
)-
tanα•cos2
=
-
tanα•
=
-2,
所以,tanα=
,又 α∈(0,π),故 α=
.
(2)由(1)得,f(x)=2sin(x+
)-
tanα•cos2
=2sin(x+
)-4cos2
=
sinx+cosx-2(1+cosx)=2(
sinx-
cosx)-2=2sin(x-
)-2,
所以,y=f(x+α)=f(x+
)=2sin(x+
-
)-2=2sin(x+
)-2.
因为
≤x≤π,所以
≤x+
≤
,∴-
≤sin(x+
)≤
,∴-3≤2sin(x-
)-2≤
-2,
因此,函数y=f(x+α)的值域为[-3,
-2].
| π |
| 6 |
4
| ||
| 3 |
| x |
| 2 |
| π |
| 2 |
| π |
| 2 |
| π |
| 6 |
4
| ||
| 3 |
| π |
| 4 |
| 3 |
4
| ||
| 3 |
| 1 |
| 2 |
| 3 |
所以,tanα=
| 3 |
| π |
| 3 |
(2)由(1)得,f(x)=2sin(x+
| π |
| 6 |
4
| ||
| 3 |
| x |
| 2 |
| π |
| 6 |
| x |
| 2 |
| 3 |
| ||
| 2 |
| 1 |
| 2 |
| π |
| 6 |
所以,y=f(x+α)=f(x+
| π |
| 3 |
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
因为
| π |
| 2 |
| 2π |
| 3 |
| π |
| 6 |
| 7π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
| π |
| 6 |
| 3 |
因此,函数y=f(x+α)的值域为[-3,
| 3 |
练习册系列答案
相关题目