题目内容
已知函数f(x)=x(x-2)2+1,x∈R(1)求函数f(x)的极值;
(2)讨论函数f(x)在区间[t,t+2]上的最大值.
分析:(1)把f(x)化简后,求出f(x)的导函数,令导函数大于0列出不等式,求出不等式的解集即为函数的增区间;令导函数小于0列出不等式,求出不等式的解集即为函数的减区间,根据函数的增减性即可得到函数的极值;
(2)分三种情况:x=
在区间[t,t+2]的左边,右边及中间,根据(1)中求出函数的单调区间,利用函数的单调性即可求出相应的t范围中函数的最大值,联立即可得到f(x)最大值与t的分段函数关系式.
(2)分三种情况:x=
| 2 |
| 3 |
解答:解:(1)f(x)=x3-4x2+4x+1
∵f'(x)=3x2-8x+4=(3x-2)(x-2),
∴函数f(x)的单调递增区间为(-∞,
)和(2,+∞),f(x)的单调递减区间为(
,2),
所以x=
为f(x)的极大值点,极大值为f(
)=
x=2为f(x)的极小值点,极小值为f(2)=1.(7分)
(2)①当t+2<
即t<-
时,函数f(x)在区间[t,t+2]上递增,
∴f(x)max=f(t+2)=t3+2t2+1;
②当t≤
≤t+2即-
≤t≤-2时,
函数f(x)在区间[t,
]上递增,在区间[
,t+2]上递减,
∴f(x)max=f(
)=
;
③当t>
时,f(x)max=max{f(t),f(t+2)},
令f(t)≥f(t+2),则t(t-2)2≥(t+2)t2,t(6t-4)≤0,得0≤t≤
,
所以当t>
,f(t)<f(t+2),f(x)max=f(t+2)=t3+2t2+1,
所以f(x)max=
.
∵f'(x)=3x2-8x+4=(3x-2)(x-2),
∴函数f(x)的单调递增区间为(-∞,
| 2 |
| 3 |
| 2 |
| 3 |
所以x=
| 2 |
| 3 |
| 2 |
| 3 |
| 59 |
| 27 |
(2)①当t+2<
| 2 |
| 3 |
| 4 |
| 3 |
∴f(x)max=f(t+2)=t3+2t2+1;
②当t≤
| 2 |
| 3 |
| 4 |
| 3 |
函数f(x)在区间[t,
| 2 |
| 3 |
| 2 |
| 3 |
∴f(x)max=f(
| 2 |
| 3 |
| 59 |
| 27 |
③当t>
| 2 |
| 3 |
令f(t)≥f(t+2),则t(t-2)2≥(t+2)t2,t(6t-4)≤0,得0≤t≤
| 2 |
| 3 |
所以当t>
| 2 |
| 3 |
所以f(x)max=
|
点评:此题考查学生会利用导数研究函数的极值,会利用导数求闭区间上函数的最值,是一道综合题.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|