题目内容
(2011•安徽模拟)已知函数f(x)=2acos2x+bsinxcosx-
,且f(0)=
,f(
)=
.
(1)求f(x)的最小正周期;
(2)求f(x)的单调递增区间.
| ||
| 2 |
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
(1)求f(x)的最小正周期;
(2)求f(x)的单调递增区间.
分析:(1)利用f(0)=
,f(
)=
求得:a=
,b=1,然后利用三角形的二倍角公式及和角的正弦公式化简函数f(x),最后利用三角函数的周期公式求出f(x)的最小正周期;
(2)令f(x)中的整体角满足:2kπ-
≤2x+
≤2kπ+
(k∈Z),求出x的范围,写成区间即为f(x)的单调递增区间.
| ||
| 2 |
| π |
| 4 |
| 1 |
| 2 |
| ||
| 2 |
(2)令f(x)中的整体角满足:2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
解答:解:(1)由 f (0)=
得a=
,
由 f (
)=
得b=1
∴f (x)=
cos2x+sin x cos x-
=
cos 2x+
sin 2x=sin(2x+
)
故最小正周期T=π
(2)由2kπ-
≤2x+
≤2kπ+
(k∈Z)
得 kπ-
≤x≤kπ+
(k∈Z)
故f(x)的单调递增区间为[kπ-
,kπ+
](k∈Z).
| ||
| 2 |
| ||
| 2 |
由 f (
| π |
| 4 |
| 1 |
| 2 |
∴f (x)=
| 3 |
| ||
| 2 |
=
| ||
| 2 |
| 1 |
| 2 |
| π |
| 3 |
故最小正周期T=π
(2)由2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
得 kπ-
| 5π |
| 12 |
| π |
| 12 |
故f(x)的单调递增区间为[kπ-
| 5π |
| 12 |
| π |
| 12 |
点评:解决三角函数的有关性质问题,一般先将三角函数化为只含一个角一个函数的形式,然后利用整体角处理的方法来解决,属于中档题.
练习册系列答案
相关题目