题目内容
,其中ω>0,且f(x)的图象在y轴右侧第一个最高点的横坐标为
,
(Ⅰ)求f(x)的解析式;
(Ⅱ)写出f(x)的单调递减区间(只写结果不用写出步骤);
(Ⅲ)由y=sinx的图象,经过怎样的变换,可以得到f(x)的图象?
解:(Ⅰ).
=
(1分)
=
(2分)
∵f(x)的图象在y轴右侧第一个最高点的横坐标为
∴
,解得
(3分)
∴
(4分)
(Ⅱ).f(x)的单减区间是
(8分)
(Ⅲ)将y=sinx向左平移
个单位,纵坐标不变;(10分)
再向上平移
个单位,横坐标不变,就得到f(x)的图象.(12分).
分析:(Ⅰ)利用二倍角公式、两角和的正弦函数化简函数的表达式,通过f(x)的图象在y轴右侧第一个最高点的横坐标为
,求出ω,然后求f(x)的解析式;
(Ⅱ)直接通过正弦函数的单调减区间,写出f(x)的单调递减区间(只写结果不用写出步骤);
(Ⅲ)由y=sinx的图象,向左平移
个单位,纵坐标不变;再向上平移
个单位,横坐标不变,就得到f(x)的图象.
点评:本题是中档题,考查三角函数的化简求值,函数解析式的求法,函数图象的平行,考查计算能力.
=
∵f(x)的图象在y轴右侧第一个最高点的横坐标为
∴
∴
(Ⅱ).f(x)的单减区间是
(Ⅲ)将y=sinx向左平移
再向上平移
分析:(Ⅰ)利用二倍角公式、两角和的正弦函数化简函数的表达式,通过f(x)的图象在y轴右侧第一个最高点的横坐标为
(Ⅱ)直接通过正弦函数的单调减区间,写出f(x)的单调递减区间(只写结果不用写出步骤);
(Ⅲ)由y=sinx的图象,向左平移
点评:本题是中档题,考查三角函数的化简求值,函数解析式的求法,函数图象的平行,考查计算能力.
练习册系列答案
相关题目