题目内容
如图,直线
,抛物线
,已知点
在抛物线
上,且抛物线
上的点到直线
的距离的最小值为
.

(1)求直线
及抛物线
的方程;
(2)过点
的任一直线(不经过点
)与抛物线
交于
、
两点,直线
与直线
相交于点
,记直线
,
,
的斜率分别为
,
,
.问:是否存在实数
,使得
?若存在,试求出
的值;若不存在,请说明理由.
(1)求直线
(2)过点
(1)直线
的方程为
,抛物线
的方程为
.(2)存在且
试题分析:
(1)把点P的坐标带入抛物线方程即可求出抛物线方程,而直线l方程的求解有两种方法,法1,可以考虑求出既与抛物线相切,又与直线l平行的直线,该直线与直线l的距离即为抛物线上的点到直线l的最短距离,进而可以求的相应的b值。法二,可以设抛物线上任意一点为
(2)直线AB经过点Q且不经过P,所以直线AB斜率存在且利用点斜式设出直线方程,联立直线与抛物线方程,得到关于A,B横坐标或者纵坐标的韦达定理,进而利用AB直线的斜率表示PA,PB直线的斜率,再联立直线AB与直线l,用AB直线斜率表示PM直线的斜率,得到
试题解析:
(1)(法一)
设与直线
由
(法二)
设
因此,直线
(2)
由
设点
由
因此,存在实数
练习册系列答案
相关题目