题目内容

过双曲线
x2
a2
-
y2
b2
=0(b>0,a>0)的左焦点F(-c,0)(c>0),作圆x2+y2=
a2
4
的切线,切点为E,延长FE交双曲线右支于点P,若
OE
=
1
2
OF
+
OP
),则双曲线的离心率为(  )
A、
10
2
B、
10
5
C、
10
D、
2
分析:
OE
=
1
2
OF
+
OP
),知E为PF的中点,令右焦点为F′,则O为FF′的中点,则PF′=2OE=a,能推导出在Rt△PFF′中,PF2+PF′2=FF′2,由此能求出离心率.
解答:解:精英家教网∵若
OE
=
1
2
OF
+
OP
),
∴E为PF的中点,令右焦点为F′,则O为FF′的中点,
则PF′=2OE=a,
∵E为切点,
∴OE⊥PF
∴PF′⊥PF
∵PF-PF′=2a
∴PF=PF′+2a=3a
在Rt△PFF′中,PF2+PF′2=FF′2
即9a2+a2=4c2
∴离心率e=
c
a
=
10
2

故选:A.
点评:本题考查圆与圆锥曲线的综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网