题目内容

已知动点P与双曲线x2-
y2
3
=1
.的两焦点F1,F2的距离之和为大于4的定值,且|
PF1
|•|
PF2
|的最大值为9.
(1)求动点P的轨迹E的方程;
(2)若A,B是曲线E上相异两点,点M(0,2)满足
AM
MB
,求实数λ的取值范围.
分析:(1)先由双曲线的方程得到两焦点,设已知定值为2a,则|
PF
1
|+|
PF2
|=2a
,因此,动点P的轨迹E是以F1(-2,0),F2(2,0)为焦点,长轴长为2a的椭圆.利用待定系数法结合基本不等式即可求得椭圆的方程;
(2)设所求直线l的方程:y=kx-2,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量关系式即可求得实数λ的取值范围
,从而解决问题.
解答:解:(1)双曲线x2-
y2
3
=1
的焦点F1(-2,0).
设已知定值为2a,则|
PF
1
|+|
PF2
|=2a
,因此,动点P的轨迹E是以F1(-2,0),F2(2,0)为焦点,长轴长为2a的椭圆.
设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)
.(2分)
|
PF 1
|•|
PF 2
|≤(
|
PF 1
|+
PF 2
2
) 2
=a2,
∴a2=9,b2=a2-c2=5,
∴动点P的轨迹E的方程
x2
9
+
y2
5
=1

(II)设A(x1,y1),B(x2,y2),则由点M(0,2)满足
AM
MB
,得:
-x 1=λx   2 
-2-y 1=λ(y 2+2)
  且M,A,B三点共线,设直线为l,
当直线l的斜率存在时,设l:y=kx-2,则将直线的方程代入椭圆的方程,化简得:
(5+9k2)x2-36kx-9=0,根据根与系数的关系得:
  x1+x2=
36k
5+9k  2
,x1x2=
-9
5+9k 2

将x1=-λx2,代入,消去x2,得:
(1-λ) 2
λ
=
144k 2
5+9k 2

化得:
(1-λ) 2
λ
=
144k 2
5+9k 2
=
144
5
k 2
+9

0<
(1-λ) 2
λ
< 16

解之得:实数λ的取值范围为[9-4
5
,9+4
5
].
点评:本小题主要考查圆锥曲线的轨迹问题、直线与圆锥曲线的综合问题等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网