题目内容
求| lim |
| x→0 |
| ex-e-x-2x |
| x-sinnx |
分析:由罗比塔法则求解.解题时要注意当n≠1时和当n=1时的不同结果.
解答:应用罗比塔法则,
=
=0.(n≠1)
当n=1时,
=
=
=
=2
| lim |
| x→0 |
| ex-e-x-2x |
| x-sinnx |
| lim |
| x→0 |
| ex-e-x-2 |
| 1-ncosnx |
当n=1时,
| lim |
| x→0 |
| ex-e-x-2x |
| x-sinnx |
| lim |
| x→0 |
| ex-e-x-2 |
| 1-cosx |
| lim |
| x→0 |
| ex-e-x |
| sinx |
| lim |
| x→0 |
| ex-e-x |
| cosx |
点评:本题考查极限的性质和应运,解题时要注意公式的灵活运用.
练习册系列答案
相关题目