题目内容

写出终边在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.

解:如图5,在直角坐标系中画出直线y=x,可以发现它与x轴夹角是45°,在0°—360°范围内,终边在直线y=x上的角有两个:45°和225°,因此,终边在直线y=x上的角的集合

图5

S={β|β=45°+k·360°,k∈Z}∪{β|β=225°+k·360°,k∈Z}.

S中适合-360°≤β<720°的元素是:

45°-2×180°=-315°,

45°-1×180°=-135°,

45°+0×180°=45°,

45°+1×180°=225°,

45°+2×180°=405°,

45°+3×180°=585°.

点评:本例是让学生表示终边在已知直线的角,并找出某一范围的所有的角,即按一定顺序取k的值,应训练学生掌握这一方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网