题目内容

定义:在数列{an}中,an>0,且an≠1,若anan+1为定值,则称数列{an}为“等幂数列”.已知数列{an}为“等幂数列”,且a1=2,a2=4,Sn为数列{an}的前n项和,则S2011等于(  )
A.6032B.6030C.2D.4
a1a2=a2a3,即24=4a3,所以a3=2.
同理得a4=4,a5=2,这是一个周期数列.
所以S2011=
2011-1
2
×(2+4)+2=6032.
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网