题目内容
定义:在数列{an}中,an>0,且an≠1,若anan+1为定值,则称数列{an}为“等幂数列”.已知数列{an}为“等幂数列”,且a1=2,a2=4,Sn为数列{an}的前n项和,则S2011等于( )
| A.6032 | B.6030 | C.2 | D.4 |
a1a2=a2a3,即24=4a3,所以a3=2.
同理得a4=4,a5=2,这是一个周期数列.
所以S2011=
×(2+4)+2=6032.
故选A.
同理得a4=4,a5=2,这是一个周期数列.
所以S2011=
| 2011-1 |
| 2 |
故选A.
练习册系列答案
相关题目
定义:在数列{an}中,an>0且an≠1,若
为定值,则称数列{an}为“等幂数列”.已知数列{an}为“等幂数列”,且a1=2,a2=4,Sn为数列{an}的前n项和,则S2009=( )
| a | an+1 n |
| A、6026 | B、6024 |
| C、2 | D、4 |