题目内容
| 3 |
(1)求证:A1C⊥平面AB1C1;
(2)求A1B1与平面AB1C1所成的角的正弦值.
分析:(1)Rt△ABC中算出AC=
=
,而矩形AA1C1C中AC=
,得到四边形AA1C1C为正方形,从而AC1⊥A1C.再由线面垂直的判定与性质,证出B1C1⊥A1C.由B1C1、AC1是平面AB1C1内的相交直线,得A1C⊥平面AB1C1;
(2)设AC1、A1C的交点为O,连结B1O.由(1)A1C⊥平面AB1C1,得∠A1B1O就是A1B1与平面AB1C1所成的角,在Rt△A1B1C1中,算出A10和A1B1的长,利用三角函数的定义算出sin∠A1B1O=
,即可得出A1B1与平面AB1C1所成的角的正弦值.
| AB2-BC2 |
| 3 |
| 3 |
(2)设AC1、A1C的交点为O,连结B1O.由(1)A1C⊥平面AB1C1,得∠A1B1O就是A1B1与平面AB1C1所成的角,在Rt△A1B1C1中,算出A10和A1B1的长,利用三角函数的定义算出sin∠A1B1O=
| ||
| 6 |
解答:
解:(1)∵△ABC中,∠ACB=90°,AB=2,BC=1,
∴AC=
=
∵三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC?平面ABC
∴CC1⊥AC,得四边形AA1C1C为矩形,
∵AA1=AC=
,可得四边形AA1C1C为正方形
∴AC1⊥A1C,
∵B1C1⊥A1C1,B1C1⊥C1C,且A1C1∩C1C=C1,
∴B1C1⊥平面AA1C1C,
∵A1C?平面AA1C1C,∴B1C1⊥A1C
∵B1C1、AC1是平面AB1C1内的相交直线,∴A1C⊥平面AB1C1;
(2)设AC1、A1C的交点为O,连结B1O
∵A1C⊥平面AB1C1,即A10⊥平面AB1C1,∴∠A1B1O就是A1B1与平面AB1C1所成的角
∵正方形AA1C1C的边长AC=
,∴A10=
AC=
∵Rt△A1B1C1中,A1B1=AB=3,
∴sin∠A1B1O=
=
,即A1B1与平面AB1C1所成的角的正弦值等于
.
∴AC=
| AB2-BC2 |
| 3 |
∵三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC?平面ABC
∴CC1⊥AC,得四边形AA1C1C为矩形,
∵AA1=AC=
| 3 |
∴AC1⊥A1C,
∵B1C1⊥A1C1,B1C1⊥C1C,且A1C1∩C1C=C1,
∴B1C1⊥平面AA1C1C,
∵A1C?平面AA1C1C,∴B1C1⊥A1C
∵B1C1、AC1是平面AB1C1内的相交直线,∴A1C⊥平面AB1C1;
(2)设AC1、A1C的交点为O,连结B1O
∵A1C⊥平面AB1C1,即A10⊥平面AB1C1,∴∠A1B1O就是A1B1与平面AB1C1所成的角
∵正方形AA1C1C的边长AC=
| 3 |
| ||
| 2 |
| ||
| 2 |
∵Rt△A1B1C1中,A1B1=AB=3,
∴sin∠A1B1O=
| A1O |
| A1B1 |
| ||
| 6 |
| ||
| 6 |
点评:本题在特殊三棱柱中证明线面垂直,并求直线与平面所成角大小.着重考查了线面垂直判定定理、直线与平面所成角的定义与求法等知识,属于中档题.
练习册系列答案
相关题目