题目内容

(2013•盐城一模)近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费C(单位:万元)与安装的这种太阳能电池板的面积x(单位:平方米)之间的函数关系是C(x)=
k20x+100
(x≥0,k为常数).记F为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和.
(1)试解释C(0)的实际意义,并建立F关于x的函数关系式;
(2)当x为多少平方米时,F取得最小值?最小值是多少万元?
分析:(1)C(0)的实际意义是安装这种太阳能电池板的面积为0时的用电费用,依题意,C(0)=
k
100
=24,可求得k,从而得到F关于x的函数关系式;
(2)利用基本不等式即可求得F取得的最小值及F取得最小值时x的值.
解答:解:(1)C(0)的实际意义是安装这种太阳能电池板的面积为0时的用电费用,
即未安装电阳能供电设备时全村每年消耗的电费…(2分)
由C(0)=
k
100
=24,得k=2400 …(3分)
所以F=15×
2400
20x+100
+0.5x=
1800
x+5
+0.5x,x≥0…(7分)
(2)因为
1800
x+5
+0.5(x+5)-2.5≥2
1800×0.5
-2.5=57.5,…(10分)
当且仅当
1800
x+5
=0.5(x+5),即x=55时取等号 …(13分)
所以当x为55平方米时,F取得最小值为57.5万元…(14分)
点评:本题考查函数最值的应用,着重考查分析与理解能力,考查基本不等式的应用,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网