题目内容
设A={(x,y)|x2+(y-1)2=1},B={(x,y)|x+y-c≥0},则使A⊆B的c的取值范围是
- A.

- B.

- C.

- D.

C
分析:由圆的方程找出圆心坐标和半径,依题意得,只要圆上的点都在直线之上,临界情况就是直线和圆下部分相切,即圆心(0,1)到直线的距离是1,利用点到直线的距离公式得到关于c的方程,求出方程的解,根据图象判断符合题意的c的值即可得到使不等式恒成立时c的取值范围.
解答:由圆的方程x2+(y-1)2=1得,圆心(0,1),半径r=1
令圆x2+(y-1)2=1与直线x+y-c=0相切,
则圆心到直线的距离d=r,即
=1,化简得1-c=±
,
即c=1+
,c=1-
(舍去),
结合图象可知,当-c≥
-1时即c≤-
-1,圆上的任一点都能使不等式x+y-c≥0恒成立.
故选C.
点评:此题考查学生掌握不等式恒成立时所满足的条件及直线与圆相切时所满足的条件,灵活运用点到直线的距离公式化简取值,灵活运用数形结合的数学思想解决实际问题,是一道综合题.
分析:由圆的方程找出圆心坐标和半径,依题意得,只要圆上的点都在直线之上,临界情况就是直线和圆下部分相切,即圆心(0,1)到直线的距离是1,利用点到直线的距离公式得到关于c的方程,求出方程的解,根据图象判断符合题意的c的值即可得到使不等式恒成立时c的取值范围.
解答:由圆的方程x2+(y-1)2=1得,圆心(0,1),半径r=1
令圆x2+(y-1)2=1与直线x+y-c=0相切,
则圆心到直线的距离d=r,即
即c=1+
结合图象可知,当-c≥
故选C.
点评:此题考查学生掌握不等式恒成立时所满足的条件及直线与圆相切时所满足的条件,灵活运用点到直线的距离公式化简取值,灵活运用数形结合的数学思想解决实际问题,是一道综合题.
练习册系列答案
相关题目