题目内容
(sin22.5°+cos22.5°)(sin22.5°-cos22.5°)=
- A.-

- B.

- C.

- D.-

A
分析:根据平方差公式化简原式,提取-1后再利用二倍角的余弦函数公式化简,最后利用特殊角的三角函数值即可求出原式的值.
解答:(sin22.5°+cos22.5°)(sin22.5°-cos22.5°)
=sin222.5°-cos222.5°
=-(cos222.5°-sin222.5°)
=-cos(2×22.5°)
=-cos45°
=-
.
故选A
点评:此题考查了二倍角的余弦函数公式,以及特殊角的三角函数值,利用平方差公式把原式进行变形是本题的突破点.
分析:根据平方差公式化简原式,提取-1后再利用二倍角的余弦函数公式化简,最后利用特殊角的三角函数值即可求出原式的值.
解答:(sin22.5°+cos22.5°)(sin22.5°-cos22.5°)
=sin222.5°-cos222.5°
=-(cos222.5°-sin222.5°)
=-cos(2×22.5°)
=-cos45°
=-
故选A
点评:此题考查了二倍角的余弦函数公式,以及特殊角的三角函数值,利用平方差公式把原式进行变形是本题的突破点.
练习册系列答案
相关题目
cos67.5°cos22.5°+sin22.5°sin67.5°等于( )
| A、0 | ||||
B、
| ||||
C、
| ||||
| D、1 |
(sin22.5°+cos22.5°)(sin22.5°-cos22.5°)=( )
A、-
| ||||
B、
| ||||
C、
| ||||
D、-
|