题目内容
定义在R上的奇函数f(x)在x∈[0,+∞)时的表达式是x(1-x),则在x∈(-∞,0]时的表达式是( )
| A.x(1+x) | B.-x(1+x) | C.x(x-1) | D.-x(1-x) |
当x∈(-∞,0]时,-x∈[0,+∞)
∵x∈[0,+∞),f(x)=x(1-x)
∴f(-x)=-x(1+x)
由函数为奇函数可得,f(-x)=-f(x)
∴-f(x)=-x(1+x)
∴f(x)=x(1+x)
故选:A.
∵x∈[0,+∞),f(x)=x(1-x)
∴f(-x)=-x(1+x)
由函数为奇函数可得,f(-x)=-f(x)
∴-f(x)=-x(1+x)
∴f(x)=x(1+x)
故选:A.
练习册系列答案
相关题目
定义在R上的奇函数f(x)满足f(2x)=-2f(x),f(-1)=
,则f(2)的值为( )
| 1 |
| 2 |
| A、-1 | B、-2 | C、2 | D、1 |