题目内容
已知| a |
| 3 |
| b |
| a |
| b |
| b |
| 3 |
| 2 |
(Ⅰ)当x∈[
| π |
| 6 |
| π |
| 2 |
(Ⅱ)当x∈[
| π |
| 6 |
| π |
| 2 |
| π |
| 12 |
(Ⅲ)将函数y=f(x)的图象向右平移
| π |
| 12 |
分析:(1)先根据向量的数量积表示出函数f(x)的解析式,然后化简为y=Asin(wx+ρ)+b的形式,再由x的范围确定2x+
的范围,从而根据正弦函数的性质可解题.
(2)先根据x∈[
,
]时,若f(x)=8,求出cos(2x+
)=-
,进而可得到sin(2x+
),然后表示出f(x-
)可得答案.
(3)函数f(x)经过平移可得到g(x)=5sin2x,再对函数g(x)判断奇偶性即可.
| π |
| 6 |
(2)先根据x∈[
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| 4 |
| 5 |
| π |
| 6 |
| π |
| 12 |
(3)函数f(x)经过平移可得到g(x)=5sin2x,再对函数g(x)判断奇偶性即可.
解答:解:(Ⅰ)f(x)=
•
+|
|2+
=5
sinxcosx+2cos2x+4cos2x+sin2x+
=5
sinxcosx+5cos2x+
=
sin2x+5×
+
=5sin(2x+
)+5;
由
≤x≤
,得
≤2x+
≤
,∴-
≤sin(2x+
)≤1
∴
≤x≤
时,函数f(x)的值域为[
,10].
(Ⅱ)f(x)=5sin(2x+
)+5=8,则sin(2x+
)=
,
≤x≤
,得
≤2x+
≤
;
所以cos(2x+
)=-
,
f(x-
)=5sin2x+5=5sin(2x+
-
)+5=
+7.
(Ⅲ)由题意知f(x)=5sin(2x+
)+5→g(x)=5sin[2(x-
)+
)+5-5=5sin2x,
所以g(x)=5sin2x;
g(-x)=5sin(-2x)=-5sin2x=-g(x),
故g(x)为奇函数.
| a |
| b |
| b |
| 3 |
| 2 |
| 3 |
| 3 |
| 2 |
=5
| 3 |
| 5 |
| 2 |
| 5 |
| 2 |
| 3 |
| 1+cos2x |
| 2 |
| 5 |
| 2 |
=5sin(2x+
| π |
| 6 |
由
| π |
| 6 |
| π |
| 2 |
| π |
| 2 |
| π |
| 6 |
| 7π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
∴
| π |
| 6 |
| π |
| 2 |
| 5 |
| 2 |
(Ⅱ)f(x)=5sin(2x+
| π |
| 6 |
| π |
| 6 |
| 3 |
| 5 |
| π |
| 6 |
| π |
| 2 |
| π |
| 2 |
| π |
| 6 |
| 7π |
| 6 |
所以cos(2x+
| π |
| 6 |
| 4 |
| 5 |
f(x-
| π |
| 12 |
| π |
| 6 |
| π |
| 6 |
3
| ||
| 2 |
(Ⅲ)由题意知f(x)=5sin(2x+
| π |
| 6 |
| π |
| 12 |
| π |
| 6 |
所以g(x)=5sin2x;
g(-x)=5sin(-2x)=-5sin2x=-g(x),
故g(x)为奇函数.
点评:本题主要考查三角函数的图象和性质--奇偶性、值域的有关问题.一般先将函数化简为y=Asin(wx+ρ)的形式再解题.
练习册系列答案
相关题目