题目内容
已知两点M(-2,0)、N(2,0),点P为坐标平面内的动点,满足|
||
|+
·
=0,求动点P(x,y)的轨迹方程.
解 设P(x,y),则
=(4,0),
=(x+2,y),
=(x-2,y).
∴|
|=4,|
|=![]()
·
=4(x-2),
代入|
|·|
|+
·
=0,
得4
+4(x-2)=0,
即
=2-x,化简整理,得y2=-8x,故动点P(x,y)的轨迹方程为y2=
-8x.
练习册系列答案
相关题目
题目内容
已知两点M(-2,0)、N(2,0),点P为坐标平面内的动点,满足|
||
|+
·
=0,求动点P(x,y)的轨迹方程.
解 设P(x,y),则
=(4,0),
=(x+2,y),
=(x-2,y).
∴|
|=4,|
|=![]()
·
=4(x-2),
代入|
|·|
|+
·
=0,
得4
+4(x-2)=0,
即
=2-x,化简整理,得y2=-8x,故动点P(x,y)的轨迹方程为y2=
-8x.