题目内容
(本题满分12分)设函数f (x) =
(b,c∈N*),若方程f(x) = x的解为0,2,且f (–2)<–
.(Ⅰ)试求函数f(x)的单调区间;(Ⅱ)已知各项不为零的数列{an}满足4Sn·f (
) = 1,其中Sn为{an}的前n项和.求证:
.
(Ⅰ)f(x)的单调递增区间为(–∞,0),(2,+∞)单调递减区间为(0,1),(1,2)(Ⅱ) 略
(Ⅰ)解

.------(2分)
由f (–2) =
又∵b,c∈N* ∴c = 2,b = 2
∴f (x) =
.-------(4分)
令f′(x)>0得:x<0或x>2,令f′(x)<0得:0<x<2∴f(x)的单调递增区间为(–∞,0),
(2,+∞)f(x)的单调递减区间为(0,1),(1,2)--------(6分)
(Ⅱ)证明:由已知可得:2Sn = an –
,

两式相减得:(an + an – 1) (an – an – 1+1) =" 0" (n≥2)∴an = –an–1或an –an–1 =" –1 " -(7分)
当n ="1" 时,2a1 = a1 –

若an = –an–1,则a2 = –a1 = 1与an≠1矛盾.(定义域要求an≠1)∴an – an–1 = 1,∴an= –n.(8分)
要证的不等式转化为



先证不等式
令g (x) = x –ln(1 + x),h(x) = ln(x +1) –
-----(10分)
则g′(x) =
,h′(x) =
∵x>0 ∴g′(x)>0,h′(x)>0∴g (x), h(x)在(0,+∞)上单调递增,
∴g (x)>g (0) = 0,h(x)>h(0) =" 0 " ∴
。
故
,即
-----(12分)
由f (–2) =
∴f (x) =
令f′(x)>0得:x<0或x>2,令f′(x)<0得:0<x<2∴f(x)的单调递增区间为(–∞,0),
(2,+∞)f(x)的单调递减区间为(0,1),(1,2)--------(6分)
(Ⅱ)证明:由已知可得:2Sn = an –
两式相减得:(an + an – 1) (an – an – 1+1) =" 0" (n≥2)∴an = –an–1或an –an–1 =" –1 " -(7分)
当n ="1" 时,2a1 = a1 –
若an = –an–1,则a2 = –a1 = 1与an≠1矛盾.(定义域要求an≠1)∴an – an–1 = 1,∴an= –n.(8分)
要证的不等式转化为
先证不等式
则g′(x) =
∴g (x)>g (0) = 0,h(x)>h(0) =" 0 " ∴
故
练习册系列答案
相关题目