题目内容
△ABC的三个内角A、B、C依次成等差数列;
(Ⅰ)若sin2B=sinAsinc,试判断△ABC的形状;
(Ⅱ)若△ABC为钝角三角形,且a>c,试求代数式sin2
+
sin
COS
-
的取值范围.
(Ⅰ)若sin2B=sinAsinc,试判断△ABC的形状;
(Ⅱ)若△ABC为钝角三角形,且a>c,试求代数式sin2
| C |
| 2 |
| 3 |
| A |
| 2 |
| A |
| 2 |
| 1 |
| 2 |
分析:(Ⅰ)△ABC的三个内角A、B、C依次成等差数列,以及sin2B=sinAsinc,推出B=60°,a=c,即可判断△ABC的形状;
(Ⅱ)利用二倍角公式,两角和的正弦函数公式化简sin2
+
sin
COS
-
为一个角的一个三角函数的形式,根据A的范围确定表达式的取值范围.
(Ⅱ)利用二倍角公式,两角和的正弦函数公式化简sin2
| C |
| 2 |
| 3 |
| A |
| 2 |
| A |
| 2 |
| 1 |
| 2 |
解答:解:(Ⅰ)∵sin2B=sinAsinC,∴b2=ac.
∵A,B,C依次成等差数列,∴2B=A+C=π-B,B=
.
由余弦定理b2=a2+c2-2accosB,a2+c2-ac=ac,∴a=c.
∴△ABC为正三角形.
(Ⅱ)sin2
+
sin
cos
-
=
+
sinA-
=
sinA-
cos(
-A)
=
sinA+
cosA-
sinA
=
sinA+
cosA
=
sin(A+
)
∵
<A<
,∴
<A+
<
,
∴
<sin(A+
)<
,
<
sin(A+
)<
.
∴代数式sin2
+
sin
cos
+
的取值范围是(
,
).
∵A,B,C依次成等差数列,∴2B=A+C=π-B,B=
| π |
| 3 |
由余弦定理b2=a2+c2-2accosB,a2+c2-ac=ac,∴a=c.
∴△ABC为正三角形.
(Ⅱ)sin2
| C |
| 2 |
| 3 |
| A |
| 2 |
| A |
| 2 |
| 1 |
| 2 |
=
| 1-cosC |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
=
| ||
| 2 |
| 1 |
| 2 |
| 2π |
| 3 |
=
| ||
| 2 |
| 1 |
| 4 |
| ||
| 4 |
=
| ||
| 4 |
| 1 |
| 4 |
=
| 1 |
| 2 |
| π |
| 6 |
∵
| π |
| 2 |
| 2π |
| 3 |
| 2π |
| 3 |
| π |
| 6 |
| 5π |
| 6 |
∴
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 4 |
∴代数式sin2
| C |
| 2 |
| 3 |
| A |
| 2 |
| A |
| 2 |
| 3 |
| 2 |
| 1 |
| 4 |
| ||
| 4 |
点评:本题是中档题,考查三角函数化简求值,正弦定理的应用,二倍角公式、两角和的正弦公式的应用,函数值域的确定,考查计算能力.
练习册系列答案
相关题目
已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=
,A+C=2B,则sinC=( )
| 3 |
| A、0 | B、2 | C、1 | D、-1 |