题目内容
已知函数![]()
若函数
在
和
上是增函数,在
是减函数,求
的值;
讨论函数
的单调递减区间;
如果存在
,使函数
,![]()
,在
处取得最小值,试求
的最大值.
【答案】
![]()
;
当
时,单调减区间为
当
时,单调减区间为
;
![]()
.
【解析】
试题分析:
通过求导以及极值点的导数计算
的值为1;
通过导数与函数的单调性关系讨论函数
的单调减区间;
先写出
函数表达式,是一个三次多项式.由
,
在
处取得最小值知
在区间
上恒成立,从而得
再讨论
与
时利用二次函数在闭区间的最值问题解得
.
试题解析:(Ⅰ)
1分
函数
在
和
上是增函数,在
上是减函数,
∴
为
的两个极值点,∴
即
3分
解得:
4分
(Ⅱ)
,
的定义域为
,
5分
当
时,由
解得
,
的单调减区间为
7分
当
时,由
解得
,
的单调减区间为
9分
(Ⅲ)
,据题意知
在区间
上恒成立,即
①
10分
当
时,不等式①成立;
当
时,不等式①可化为
② 11分
令
,由于二次函数
的图象是开口向下的抛物线,故它在闭区间上的最小值必在端点处取得,又
,所以不等式②恒成立的充要条件是
,即
12分
即
,因为这个关于
的不等式在区间
上有解,所以
13分
又
,故
,
14分
考点:1.函数的求导;2.利用导数求函数单调性;3.利用二次函数图象解一元二次不等式的恒成立问题.
练习册系列答案
相关题目