题目内容
已知向量
=(1,sin(ωx+
)),
=(2,2sin(ωx-
))(其中ω为正常数)
(Ⅰ)若ω=1,x∈[
,
],求
∥
时tanx的值;
(Ⅱ)设f(x)=
•
-2,若函数f(x)的图象的相邻两个对称中心的距离为
,求f(x)在区间[0,
]上的最小值.
| m |
| π |
| 3 |
| n |
| π |
| 6 |
(Ⅰ)若ω=1,x∈[
| π |
| 6 |
| 2π |
| 3 |
| m |
| n |
(Ⅱ)设f(x)=
| m |
| n |
| π |
| 2 |
| π |
| 2 |
(Ⅰ)
∥
时,sin(x-
)=sin(x+
),(2分)
sinxcos
-cosxsin
=sinxcos
+cosxsin
则
sinx-
cosx=
sinx+
cosx(4分)
sinx=
cosx,
所以tanx=
=2+
(6分)
(Ⅱ)f(x)=2sin(ωx-
)sin(ωx+
)=2sin(ωx-
)cos[(ωx+
)-
]=2sin(ωx-
)cos(ωx-
)=sin(2ωx-
).(9分)
(或f(x)=2sin(ωx-
)sin(ωx+
)=2(
sinωx-
cosωx)(
sinωx+
cosωx)=2(
sin2ωx-
cos2ωx+
sinωxcosωx)=-
cos2ωx+
sin2ωx=sin(2ωx-
)(9分)
∵函数f(x)的图象的相邻两个对称中心的距离为
∴f(x)的最小正周期为π,又ω为正常数,
∴
=π,解之,得ω=1.(11分)
故f(x)=sin(2x-
).
因为x∈[0,
],所以-
≤2x-
≤
.
故当x=-
时,f(x)取最小值-
(14分)
| m |
| n |
| π |
| 6 |
| π |
| 3 |
sinxcos
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| π |
| 3 |
则
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
所以tanx=
| ||
|
| 3 |
(Ⅱ)f(x)=2sin(ωx-
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
(或f(x)=2sin(ωx-
| π |
| 6 |
| π |
| 3 |
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| ||
| 4 |
| ||
| 4 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| π |
| 3 |
∵函数f(x)的图象的相邻两个对称中心的距离为
| π |
| 2 |
∴f(x)的最小正周期为π,又ω为正常数,
∴
| 2π |
| 2ω |
故f(x)=sin(2x-
| π |
| 3 |
因为x∈[0,
| π |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
故当x=-
| π |
| 3 |
| ||
| 2 |
练习册系列答案
相关题目