题目内容

设f(x)是定义在R上的函数.
①若存在x1,x2∈R,x1<x2,使f(x1)<f(x2)成立,则函数f(x)在R上单调递增;
②若存在x1,x2∈R,x1<x2,使f(x1)≤f(x2)成立,则函数f(x)在R上不可能单调递减;
③若存在x2>0,对于任意x1∈R,都有f(x1)<f(x1+x2)成立,则函数f(x)在R上单调递增;
④对任意x1,x2∈R,x1<x2,都有f(x1)≥f(x2)成立,则函数f(x)在R上单调递减.

以上命题正确的序号是


  1. A.
    ①③
  2. B.
    ②③
  3. C.
    ②④
  4. D.
D
根据增函数和减函数的定义知仅有②正确,故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网