题目内容
如果数列{an}满足
=q(q为非零常数),就称数列{an}为和比数列,下列四个说法中:
①若{an}是等比数列,则{an}是和比数列;
②设bn=an+an+1,若{an}是和比数列,则{bn}也是和比数列;
③存在等差数列{an},它也是和比数列;
④设bn=(an+an+1)2,若{an}是和比数列,则{bn}也是和比数列.
其中正确的说法是
| an+1+an+2 | an+an+1 |
①若{an}是等比数列,则{an}是和比数列;
②设bn=an+an+1,若{an}是和比数列,则{bn}也是和比数列;
③存在等差数列{an},它也是和比数列;
④设bn=(an+an+1)2,若{an}是和比数列,则{bn}也是和比数列.
其中正确的说法是
③④
③④
.分析:①②列举反例,若公比为-1,则结论不成立;③等差数列{an},为非0常数列,显然成立;④设bn=(an+an+1)2,根据定义可知
=q2,从而可判断.
| (an+1+an+2)2 |
| (an+an+1)2 |
解答:解:①若公比为-1,则结论不成立;
②{an}是和比数列,则可知{bn}是等比数列,若公比为-1,则结论不成立;
③等差数列{an},为非0常数列,显然成立;
④设bn=(an+an+1)2,若{an}是和比数列,则
=q2故{bn}也是和比数列.
故答案为③④
②{an}是和比数列,则可知{bn}是等比数列,若公比为-1,则结论不成立;
③等差数列{an},为非0常数列,显然成立;
④设bn=(an+an+1)2,若{an}是和比数列,则
| (an+1+an+2)2 |
| (an+an+1)2 |
故答案为③④
点评:本题以数列为载体,考查新定义,关键是对新定义的理解.
练习册系列答案
相关题目