题目内容
| 4 |
| 3 |
(1)求a1;
(2)求an的表达式;
(3)证明:
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| 2 |
分析:(1)求导函数,求得过P1切线方程,即可求得a1;
(2)确定过Pn+1(an,an
)的切线方程,利用直线过Qn+1(an+1,0),可得an的表达式;
(3)证明
>1-
,累加即可证得结论.
(2)确定过Pn+1(an,an
| 4 |
| 3 |
(3)证明
| 1 |
| an+1 |
| 1 |
| 2n+1 |
解答:(1)解:y′=
x
,则y′|x=1=
…(2分)
过P1切线方程:y-1=
(x-1),可得Q1(
,0),则a1=
. …(4分)
(2)解:y′|x=an=
an
,过Pn+1(an,an
)的切线方程:y-an
=
an
(x-an),…(6分)
该直线过Qn+1(an+1,0),则0-an
=
an
(an+1-an)
化简得an+1=
an,则an=(
)n…(8分)
(3)证明:
=
=1-
,…(9分)
而4n+1>2•2n=2n+1,故
>1-
…(11分)
所以
+
+…
>n-[(
)2+(
)3+…+(
)n+1]=n-
•
=n-
+(
)n+1
所以
+
+…
>n-
+(
)n+1…(14分)
| 4 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
过P1切线方程:y-1=
| 4 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
(2)解:y′|x=an=
| 4 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 1 |
| 3 |
该直线过Qn+1(an+1,0),则0-an
| 4 |
| 3 |
| 4 |
| 3 |
| 1 |
| 3 |
化简得an+1=
| 1 |
| 4 |
| 1 |
| 4 |
(3)证明:
| 1 |
| an+1 |
| 4n |
| 1+4n |
| 1 |
| 4n+1 |
而4n+1>2•2n=2n+1,故
| 1 |
| an+1 |
| 1 |
| 2n+1 |
所以
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
1-(
| ||
1-
|
| 1 |
| 2 |
| 1 |
| 2 |
所以
| 1 |
| a1+1 |
| 1 |
| a2+1 |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| 2 |
点评:本题考查数列与函数的综合,考查数列的通项,考查不等式的证明,确定数列的通项是关键.
练习册系列答案
相关题目